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TEC~ICAL MEMORANDUMNO. X233

CONTRIBUTIONTO TKE EROBLEMOT

By C. Scbmiedenand K.

Omum

FLOWAT HIGH EwmD*

H. KawalJd

Fart 1. A Few GeneralRemarksCoveringthe Prandtl-BusemannMethod

Part II. Effectof Compressibilityin AxiallySymmetrical3’1owaround
an Ellipsoid

IRE~Y RxMARKE
b

The authorsre~et that due to lack of time the followinginvestiga-

>
tions couldnot be &rried out to a mere finishedform. EspeciaUy ti-
the firstpart it was intendedto includea few furtherapplicationsand
to use them in the generalconsiderationsof this part. In spiteof the
fact that the intentionsof the authorscouldnot be realized,the
authorsfelt that it would servethe aims of the competitionto present
part I in its presentfragmentaryform.

%Beitragezumllastr”%ungsproblembei hohenGeschwindigkeiten.”
Lilienthal-GeseUschaftfiirLuftfahrtforschungBerichtS 13/1. Teil,
1942,pp. 40-68. (Figuresreferredto in Part I are found inmediatel.y
afterthe appendi.xtothat part.)
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PART I. A REW GENERAL REMARKS

COVERING THE PRANDTIr-

BUS E M AN NM ET HOD

INTRODUCTION

For the solutionof the yroblemof flow in the subsonicrange,
two approximationprocessesare available,the Janzen-Rayleighmethod
which,proceedingfrom the potentialor the stresmfunction,represents
the velocitiesin form of a progressiveseriesof powersof the Mach
number,end the 3Amndtl--Busemannmethodwhich,basedupon the fundamental
conceptof the Frandtlrule,determinesthe velocitiesby en expansion
in seriesaccordingto a geometricparametercharacterizingthe body
(references1 and 2). Both methodssupplementeach othermost opportunely
insofaras the first Is suitedparticular for thickbodies,hence for
relativelysmallcriticalMach numbers,whilethe secondmethodworks
best for slenderbody contourswhose criticalMach numbersare closeto
Uxlfty. Littleis known so far aboutthe limitof convergenceof the
employedseriesexpansionof both methods;no proofhas as yet been

*

givenconcerningthe ceasingof convergenceupon the reachingof local.
sonicvelocity;however,it appe~s plausiblefrom the constructionof
the, at timesvew; small,numberof the explicitlycomputedterms of

4*

the series. The first sectionof the presentreportutilizesthe lone
knownrelationbetweenvelocityand streamdensity (@V) in orderto
provethatwith the use of the streamfunctionthe differentialequations,
which serveas basisfor the practicaloelculationin both methods,lose
theirmeaningif the local sonicvelocityis exceededarqnrherein the
fieldof the flow. The fact that the solutionsof thesedifferentid.1.
equationsobtainedby iterationthen becomeuselessalso, is not sws-
prising. In section2 it is shownthat the expressionemployedby
Hantzcheand Wendt for the streamfunctionis not generalenoughend
thereforeis likelyto fail under certaincircumstances,as for instance,
for the flow arouhden ellipse. The latteris discussedin detailand
on the basis of the resultsobtainedthe suppositionsare givenand made
plausibleconcerningthe fact that the seriesexpansionof the velocities
computedby the Janzen-Rayleigh,or the Prandtl-33usemannmethodcan be
made to agreeby formaltransformation.Finally,in the concluding
secticm,the argumentsof the firsttwo sectionsare evaluatedfor the
problemof convergenceof the seriesexpansi.onbuiltupon the potential.,
with specialreferenceto a reportby C&tler (reference6).
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1. If one desiresto treat a compressibleflow with the differential
equation

lf=(a2- u2) + $W(a2 -+) - !2VWuv= O

of the correspondingstreamfunctionin the two-dimensionalcase,the
quantities a, u, v must be representedas functionsof the
derivativesof $ so as to obtaina differentialequationcontaining
only w and its derivatives. ~ the analogouscase of the potential
this transformationis very simple,sinceowingto

U.QX V.o
Y

one immediatelyobtains

(1)

(la)

wherebythis equaticmis obviouslyvalid for all physicallypossible
velocities. But the use of the streamfunctionin this instanceinvolves
a characteristicdifficultywhich becomesmcst readilyapparentthrough
eliminationof the sonicvelocityfrom equation(l). ~ n is the direc~
tion of the normal in a point of a streamline, the relation

JEpv=g (2)
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exist~betweenstrem function~~ ~elocitY Vt and ~tre~
density pv, while fo~’adiabaticflow

[

1
‘WCjj~= 1.U’V3!!

Po 2 (1‘Oi
(3)

is valid.

From (3) it is seen that P/P
?

decreasesmcnotanica.llyjwith
increasingvelocity;substituting3) into (2) it is apparent
that,while D Increasesat firstwith increasingvelocity,that
on passingthroughthe criticalvelocity- V = aw - it reachesa
maximumand in the supersonicrange for V alpi”oachhg Vmm it

decreasesto zero again. The a~pr?@mnte courseof D against V

~
is shownin figure1. To effect* requiredelhlnation of n,
V is used as functionof D or that is, the inverseof

on>
the abovefunction D(V),whichwill be, in orderto be able to
make practical.calculations,the inverseof the form of a power
series

(4)

The problemis thus the following:

Given: a functionD(V)

ReQuired: the inverseof this functionin form of a power
series(4), suchthat V = O for D = 0.

This yroblem,as known,Is solvedby the Lagr~e inversionformula.
This Lagrangeseriesconvergesin a circulm”disk with the radius
%u; inthiscme ~ equalsthe valueof D, for which

@J”= 0. This result,which is also clesz+from inspectionof the
dV
sketch,naturallyholdsalso for the casewherethe inversefunction
is not develoyedat D = O but ratherat some otherpointbetween
O and ~a, as is done in the Prandtl-ljusemannmethod. The
radiusof convergenceis then correspondinglyreducedsuch that
the limitof convergencecoincideswith sonicboundary. The same

.

.

.

holds.forthe inversefunctions u and v as functionsof
$~f
ax
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.

and,~vwhich are necessaryfor the t-f omation of (1),

eltho&jhin this case the relationsare not as clesras
for sonicvelocity. If one substitutessuch powerdevelopments
in (1)the validityof the thus obtaineddfffer~ti~ eq~tion
for * ceaseson reachingsonicvelocity- Consequently,one
shouldnot e~ct the iterativemlutions of the differential
equationsto have significanceoncethe sonicbotmderyis
exceededin them.The ssme appliesto the Reyl.@ghmeU8dvhen it
uses the streamfunction,as WSU as to the Hantzsche-Wendt
method, (developedon-thesuggestionof 3usemam) which Improves
the Prandtlrule by successiveapproximation.Both raethodsuse
the expansionin powersof the velocityccuaponents,hencemust
fail on reachingthe sonicboundsry.

It shouldbe interestingto studythis failurefor an actual
singlecase. Constderthe flow =ound the elliyseat zero
incidencefor whichthe Busemenncorrectionis computedin
appendix1, equation(20}. Even tf the streamfunctionccuqaatedthere
didretainitsvaliditywhen a supersoniczone,no matterhow
small,has developedaboutthe end point of the smell=ls$

authe curveobtainedby plotting ~n againsttie circ@erence ‘f

the eU.ipsewould have to show a courseeS ske~c@6 in fi~e 2}
becauseof the relationbetween V end

F
, ~etche dinfigure1.

a$The quantity ~ would have to attainitsnmsximumatt~ begi~w

of the supersoniczoneend then decreasemonotonouslyto the end

pointof the _ SXiS. Actually
2
a showsan entirelydifferent

course (fig.3). lt increasesmonotonicallywith the axc length
fm a supercrlticelMach naber and numericallyremainselwsys

(? W
smallerthan & -. But to such a ~ distributionthere

belongs,accordingto figure~for reasonsof continuity,either
a pure subsonicor a pure supersonicflow,both ot which are
impossibleat a supercriticalMach numberend in the presence
of stagnationpoints.

In figUre4 the streanwiensitydistributicm
(

M
)

— distribution
&l

for en ellipseof exis ratio1/10 at threedifferentMach numbers
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is plottedagainstthe conYenticma3parameterangle O, that is
onlythe renge of stretiensity valuesof interesthere. It is
seenthat the curvefor the subcriticalMach number0.80runs below
the curvefor 0.85,in the ~ioinityof the ad point of the mall axis,
hence,that the streamdensttyincreasesas yet with risingMach number.
M = 0.85 is almostexactlythe criticalMach number,consequently,
the solutionmust fail at stilllargerMach numbers. As a matter of
fact,thereresultsfor M = 0.90 the above sketchedbehaviorof

the ~ distribution;the solutim is impractical.

Figure5 sezwesto illustratethe good ccnvergenceofthe
Busemannmethodin the rangeof its validity. For the same ellipse
as in figure4 the streamdensityat the end point of the minor axis
is againplottedas functionof the Mach numberin the rsnge of
interest;the upper curveholdsfor the first step of the method,
the Prandtlrule,the lowerourvefor the secondapproximation.The
intersectionof thesecurveswith the strai@t line of the sonic
boundarygivesthe critical Mach numberin the corresponding
approximation(hence ~r = 0.74 and 0.78).

~ connectionwfth the foregoinguguments, however,another
value is of greaterinterest;which can alsobe takenfrom these
curvea. The maximumstreamdensttyh ftrstapproxin@ionhas the

Pvt
value 0.598 ~

pvt
in the secondapproximaticinthe v~ue 0.583 —

00 PoaoS
whereasthe true valuenaturallycoincideswith the sonicboundary,

hencemust be 0,578 ~. Thus, sincethe rigorous
Poao

yielda stream-densitydistributionwhichwouldhave
sonicboundaryfrombelow,at a critical.&ch number
plot indicatesthat the differencebetweenthe first
the rigoroussolutionIs largelycanceled.out by the
method,so that the methodconvergesquitewell.

solutionshould

to approachthe
of arowd 0.61,the
approximationend
secondstep of the

Moreover,it is pointedout that,at variencewith the customary
terminologyin the discussionof figureh, the Mach numberused as
criticalMach number is that correspondingto the msxlmumof the stream
density;for up to thatMach numberthe solutionobtainedby this
approximationhas a meaning.

4

14
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2. The Hentzsche44endtcalculationsproceedfrom the following
a~sumption. If A Is a parameterthat chexacterizesthe departureof
the profileform froma strai

‘7
t sectionprofile(forexample,thick-

ness, cember~angleof attack at zero incidencethe streamfunction
can be representedby a power seriesin powersof X, the coefficients
of which are funoticasof x and y:

On the basis of thle assumptionit is possibleto set up, by
means of comparisonof coefficients,a recursivesystemof difforaatial
equationsfor the functionsof the individualpowersof k whichthen
can be integratedas in the Jenzen%ayleighmethod.

But while in the Ra leighmethodthe expansionof the stream
5functicmin powersof M

wo+&l+dh2+*.. (2)

is alwayspossible,the expensicmof $ in the form (1) is by no

means guaranteeda pr3.ori.~ the contraryit will.be shownthat it
is not possibleat least in the two casescitedhere, the ellipseand
the ellipsoidof revolutionboth at zero incidencqbut that sooneror
laterterms of the form X“ in A must annearin these cases. If
that is the case it ceasesto be possibl&-to
of equationsas was done by Esntzsche4Jendt.
then as follows: The streamfunctionis put

set up the recursivesystem
The best procedureis
in the form

(3)

*O is the streamfunctionin the undisturbedfree stream, $0 + $1

representsthe Frandtlapproximation;the functione vu with u ~ 2
which are assumedto satisfythe boundarycondition vu = O on
the contour,arp’tiegilarin thb out~idedomdh and at tiflinity
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theirderivativesvanishto a sufficientdegree. It is further
assumedthat,apartfrcm sufficientlysmallzones,especially
the immediatevicinityof stagnationpoints,the function $#V
end its derivativesare smallcaraparedto all $~ and their
derivativeswith subscripts K< U, The questionwhetherthih
assumptionis satisfiedoan be answeredcnly aftercalculation
of *U*

The fact that the concetiof the orderof _tude is a
littlevague,especiallysincethe vicinityof the stagnationpointsmust
he excluded,Mea in the natureof the problemand seemstherefore
unavoidable;besidesno difficultiesarosein the calculation
of actualcases. When limitedto the secondapproximationthe
new rule givesthesane resultin all the casestreatedby
Hantzsche-Wendt,in particular,the expansionpusmeters
assumedin (1) are automaticallyobtained. But if W can no
longerbe represbxltedbyapower developmentof the form (l),
the differentlyconstructedtermsare coveredby our formula.
The necessityof excludingthe stagnationpointvicinityfrom ‘
the ap~~aisalof the orderof magnitudelies in the initialstep
of the method,the Prandtlrule,and has been voicedoftenenough
as principalobjectionagainstthisrule When stagnationpoints
exist. More accuratenmerical checks(reference3) have shown,
however,that the Prandtlrule givesa fairlycloseapproximation
even in the vicinityof the stagnationpotnts,althoughits
assumptionsare by no means satisfiedqy lower. It is not
believedthat thisbehavioris due to a luckyaccident. However,
the followingsupposition(unfortunatelywithoutproof) seems
reasonable:

If it were possibleto computethe series(2) to sqy hi@ U,
this serieswould in all probabilityconve~geabsolutely,but
not uniformlyand wouldmerelyrepresenta rearrangementof
the Rsyleighmries computedfor the same contou to any high
powersof Mach number.

In otherwords,if eachterm in (2) is develo~>edin powers
of the Mach numberthe formalrearrangementin seriesof these
powersgivesthe Reyloighseries.

If this suppositionis correct,the Prandtlrule wouldbe
legitimateS2S0for the vicinityof the stagnationpoint in a
certainmannerand would exp&ainthe surprisinglygood approxi-
mationof the rule at thesepoints. 7hfortunatd.ythereis wry
littlematerialavailableto test this conjecture,which for
lack of time couldbe evaluatedonly in two cmes, the cllipso
and.the circular-arcPjrofilewith shock-fi.-eeentry.

.

.
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In both casesthe resultof the examinationwas positivo;
however,onlythe more interestingcase of the ellipseis treated
here.

The Raylei.ghapproximationup to the term with 1? Inclusive
is known (referenoe4). The end point of the mnallaxis,that is,
the maximumspeedis

‘5!&=.*,{,+ $ [1+. . @d_#’. .5

The developmentin powersof c gives,up to the term with 64

On the otherhand the secondapproximationcomputedby (1) or (3)
gives in both cases,if one developsin terms of Mach numberand
breakeoff with the term tn M’,

(6)

so that the terms,which are for 6 as well as fo?:M are at
the most of the seconddegree,will be containedin both formulas.
The differencesin the definitionof the Mach numtier- R~leigh
refersto the velocityof soundat rest formulaa(1) and (3) to
the free-streamsonicvelocity- do not make themselvesfelt as
yet in this a~proximation.

The thiriiapproximationin the apyendixof the Busemann
methodb=ed on (3) was srriedonly far enoufjhto show the
appearanceof a term * t in c. It was not fuxthercarriedout
‘becauseof the ~ohibitive tanoudof cal.culattonsreqxireiiin order
to obtainthe final.formulasfrom the finalfoz?nulagiventkero;

3 ~ must ap??eazztoo, whichit can be seen that a term -c
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lflsewiseimpliestha
for the terms *M2 et

3. The following

ml+ TM 1{0¤X233

agreementof both developments1s to be expected
b 6 and +@ 63.

mndusione are drawnwith the use of the stream

.

.

function. !l%ePrend~2-Busemannand ths Janzen-+Rayleighmethodgive
identicalresults,but onlywhen both developmentsare carriedout
completely, Each developmentrepresentsa rearrangementof the other.
Both developmentsdivergeif at any point fn the flow domainthe local
velocityof soundis exceeded.

But in both casesthe velocitypotentialcouldbe used insteadof
the streamfunction,as is, in fact,done predominant~~In the Raylei@
method. However,no case of flow past a bo~y has been calculatedas
yet with the l&andtl-Busemannmethod. One of the likelyreasonsfor
thismight be found in the complicatednatureof the boundarycondition
for the potential. Sincethe reductionof the differentialequationto
coefficientsdependenton O aloneiS in this instanceeasilyachieved
for the entirephysicallypossiblespeedrange (asmentionedalready
In (la)),no absolutelyvalidreasonfor a ceasin~of convergenceof
the solutionon passingthroughthe velocityof sound can be found
from the differentialequationalcae,owingto its nonlinearity.But,
sincethe valuesof the velocitycomputedfor identicalconditions *
from the streamfunctionend the potentialare identicalin the domain
of convergenceof the streamfunction,there is a strongsuspicionthat
the potentialdevelopmentitself’ceasesto convergeat the sameplace. &
In fact,all the calculationmade by the Raylei@methcd with the potential,
particularlythoseby Lamla (reference5) f’orcircleand sphere,indicate
that the obtainedseriesceaoeto converge on reachingthe sonicboundary,
so far as oucha conclusioncan be drawnat all from the few explicitly
known termsof these series. Consolidatingthis resultwith those
obtainedabovefor the streamfunctionit may be statedwith great
probabilitythat even the fourthmethod,-namely,the Prandtl~semann
methodwhichuses the potential,has the samelimitof convsmg:mceas the
otherthree. This statementcontradictsthe resultof a reportby
G&tlor (referenco 6); therefore,a briefcriticalreviewof his report
will.be givenconsequently.

G&’tierused his methodto computethe flow past a wavy wall where
supersoniczone of finiteextentoccurs. Againstthisresultof G&tJer
some seriousob$eotionsmay be made.

.
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.

1. The problemof convergenceof Us dsvelopuent,of which
the firstthree termsare explicitlycal.culated$is practically
ignored.

2. A pext of the coefficientsof his first exeu@leis wrong,
accordingto a carefulcheck and with the correctcoefficients
the convergencebecomesdefinitelyworse.

3. The curves of fi~es 1(8) end L{b) tiMSreP~~ ~@
constructedwith the wrong coefficients.Whetherthe correct
valuesof the oonstentss3.rea@bring the su~erson.iczone,smell
by itse2.f,to disappearancecouldnot be checked.,unfortunately.

This is not the placeto be loleticalconcerningGUrtlerts
report. That was not our intention. However,the doubtshave to
be broughtto attention,for his reportdoes not cive a prooS,
thatwith the developmentfollowedthereina sQlutioncouldbe
obtained,whose rangeof validitywould exbendto a smallregion
of the supersonic dcunain.

r

J.

.

.

.
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In the generaldifferential.equationfor the atreernfunotion

it is necessary,in accordancewith the Prend.tl-Bueemennmethod of
the eplittjn$off of the free-streampart U parallel,to the
x-axis,to set

U=u+ul} V=vl (2)

where the quantitiesmrqing the subscript1 @note disturbance
quantities.The follti~ 18 then r@xously valid (61 = ~~locity
of soundof free stream U)

We writeJor abbreviation

M=~; P=--@ y,2M%’-,

Equstion (3) substitutedin (1) gives

(3)

(4)

-al=(u VI + lq VL) = o (5)

,

.

.

.
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.

The abbreviationL = ~; ~ = ~ givesfor the subso~c ~~~

in seconda~raximatlonthe relationbetweenthe disturbance
velooities and the disturbancestream function *2 ●

(owingto

w= = v= e-to. the subscript1 for $Z is omittedhereafter

as thereexistsno dcmgerof confuslono)

24,2U12 = u M Vy (6)

Vf = u2 $X*

Dividix (5)by & and movingall terms of higherorderto
the ri@ gives

(6) substitutedin (7)gives

-1
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The 21% patternis now affinelydistortedin the direction normal
to the flowby the Prandtltransfomatlon

we furtherput

W= LUM**

and Immediately omit the steriskfor +,
s

afterwhich (8)@ves
bymltiplicationwith p

-%2 (k - 1)

.

??extweput ~ =~l+V2+~3+ ... and determine ~l,~2,$a . . .

successivelyfrom (9) on the assumption.that ~ is small’c&pared
to *O (freestream) *2 smallrelativeto $1, *3 small.

rdative to $ p and so on. If the flow involves8 body with
stagnationpoints,this asmnption is certainlynot ftifilled
in the vicinityof’the stagnationpdntsj in such a case It
must suffioeto postulatethe validltyof the assumptionoutstde
of a certainrangefrcmthe stsgnation pointantito checkthe
$&iffcation for the assumptionon hand of the resultof the
calculation.Discountingthis difficultyfor the present,the



.
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conventionaliterationmethod
used in the R@eigh method.

15

can be used in ouzzcase as it was
Thus it obtainsfor WI end $9

the followingtwo differentialequations

SubstitutingV1 in the remainingterms of the

of (9) gives a part of the right-handside for

the disturbancetermsbelongingto ~3 a-e computedlater.

Because v~q~ = -$1~~ the firstpart of the Ueturbence term

becomeE

>

(lo)

Because Awl = 0, *1 can be regardedas ~inmy pm% of an

-ic~ fmction w(~) t = (E + in);

On denotingconJugatecomplex
tions of derivative~of $1

q~titles by a bsr, all the combina-
appeerlngabovecan he represented
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bY qinaz’y partsof functionsof ( end r: WI =
?a

-1

[ 1J w“ (w’ - YP)2

[= J W“(w12 1
. ~la)

(u)

.

Substituting(11)in (10)gives
‘.

A1V3=J
(
A ~“ #2 + 2 B # wl fit+ C wlifi12

) (=)

where

end

[
U=(K+l)V2- (K-1)1 [V4(K+I) -2 PQ (K - 1).(2-.],

p = P.?(1.12- 1),(K + 1)’- 2 y=4(2y2 -~)
.

.
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With the abbreviation

,fJ=(K+l)(v 2.1)

expetwions for ~, 9, 7 end A, B, C can be furtherconsolidated

[ ja=(u +2) {&l) u+4P 2-3

J3. @u -2; y=4(?tL2 -1)’

hence

A+(P 2.1) %7( U+5)
-,

These terms am now supplementedby
of $1 Sna *2 afterinsertionin

right-handside of (9);they are

a

those obtainedfrcm the products
the firstbmcket on the
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Now
.

4’2 = J (WL P
(see also (20))

2* =w*+ii’;2~*
17 3g =*’ ‘w’ \

J

(15d

%JJ=v
“ + w“; 2 i *133= w“ “ %“

Substituting(15)end (15a)in (14)gives

{-
A&+J ~K+l)ti%-2i](w(- w~) (w” - 1?”)

[
+lf”)+ (K+l)l12- {K - Ij(wgg+ Wfg)-2 (WC+ Wp (w” d

b

.

.

+2-(K+l)&+.(K- )1)]wg~ (w’ + w’) (16)



.
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where it shouldhe notedthat (Gee slso furtheutilow)

kw~~= -@&[a w“ w’ + (C3+ 4) w;’v’]

The right-hand6ide of (16)can be furthersimplifiedby the
previouslyused abbreviationu

(17)

(K+ L)(v2 -1)=

(K + 1)

and with it the following

t

bJ”aA&= ~

U;(K+1)V2-(K-l)=C +2

f+K -1=IS+2K

representationis obtainedfor %$ ~

Equations(X2)end (18)togethergive the disturbanceequationfor
the thirdapproximation$3 in the senseof oux iterationmethod.

If z is the coo.tlinateof the image@ane whtch containsa
circle, ~ the coordinateof the plane of flow,we get with R
as ra~us of the circle

.

.

.
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.

The transformationto ~e-plane circlecoordinatesgivesfor $2
andw ..

and.

hencewith tlw observanceof

() 01$*2g+(cwd* *,X
q -, (l~a)

the bounderycondition

(20)

To reducethe right-handside of (12)and (18)to image-planeclrckc
coordinatesit is bornein mind that

.

.
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Hence,afterintroducingW1 from (12) ant!(18)

r

(*1)
IT is essentialto note that ex~essior~ such as

%
w’ Wlz d~

are functionsof z ond ?Z$ hencemust be splitup befor=
(21) can be integratedin the usualmanner.

with

The function WI csn be written (seealso (20))

.

.
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Correspondin@ythe explicitexpressionsfOi-the dcrivr:tl-mD med
jn equa-blon(21)

.

.
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The followingintegralsmust me calculated:

23

Fran (19)
I

IT’=% . . R2- 12.&’= 2Z (R2 . a2~
~2 . &?’ az (Z2 . &2}2

-.

and eleznentsryintegrationgives

~

&*dz=(R2 .a2)2 f ..(Z&&&+L1 z-2
dz d~ [J .2 (ZR .2) .2 z 2a l’z+ a)1

f /

1

( 222) I
7#&~=(R2-=2) 22-’2dz =(~2-~2)’~ z+&

d dz ~3
U

1
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with (22)and (22a),(21)can be integrated @ving as perticmlmr
integralof the nonhomogeneousequation(21~

‘“2-“)(4)

.[

-(cr+4)-uv’2

The two termsmultipliedby in Z counteracteach other,as should
be, as otherwisean impossiblecirculationcouldappearin this
mpproximation. For largevaluesof Izl= R, ~Jz%behavesas ~.

.8L
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It is advisableto rearrangethis expression:

25

where the coefficients a to 53 followin simplemanner from

the coefficientsof (23).

In orderthat W2 comply with the ‘boundarycondition W2 = O

at the im~ -planecircle,suitableanalyticalfunctionsof z and
Z must be addedto W2*, as they-are homogeneoussolutionsof
(21). For exempl, the term w‘~C must be replacedby

(1

~13~-$-$Z j a similarproceduremust be used for the

otherterms. Ce ah terms are accompaniedby new singularities
in the outsidedomain,whichmust be compensatedfor by adding
furthersuitablehomogeneoussolutionsccunpl.yi~with the
boundexyconditions● Thus, the coefficientof a must, in
orderto satisfythe boundaryconditions(at the L e-planecircle
and at infinity)be substitutedby

and in addition,for removingtke singularitiesat E = *Z
R’

the followingfunctionhas to be added

1
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Sinoe
~2 . #

= c, a term - in E OCCUIW;the same is the case
R2 + R2

for ~. If one transformsaU termsaccordinglyand makes a few

simpl.ications,a solutionof (21)iS obt~~d w~ch Satisfies~
boundaryconditionsand has no singdmities in the outsidedomain.
This solutionis W23 its imaginsrypart representsthe third
correction*3 of the streamfunction:

)]Lla e+R2

(25)

.

-.
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.

with >

.

.

A

[

(@ - e2)2 Z2 2U (a2 Z2 + R4~

R2 (Z2 - i~2)2 (Z2 - ~qe

a ()~a.~ 2L!+4)z2

1

+cf+4

2 (22 - !=2)
~2 (22 - e2)

as checkit is easilyseenthat the residueof W2

27

r

l(25a)

—

~=@ disappears,hencethe singularityat these pointsinc.
(25)i; only apparent;furthermore,ineaohtermtith zzEr 2

the faotor R2 - # can be removed,henco W2 vanishesfor

kgkel~tl lninlty
= Rj fine13y that the expression vanishes to a sufficient

. computing the normalderivative of *3 on

tho ellipse from (25)and developingespeciallyfor z = i R,
Z=-iR (theendpoint ofthpti
is apparentthat:

(1)The developmentof all te~
tkirdorderin c; in particulm,at

logarithm,a term -C3 (arcCos g -

axis ) in powers of C, it

starts with a term of the
aq and a~ throughthe

1) or in third order

-w - )1 will.occurthat cannotbe removedagainby the terms

equaXlyproportional.to C3 arisi~ from *1 and V2.

(2) In ~ and ~ en additiveteim ~oportional to & in IS
occursMkewise for which the same is true as in (1). Also this
termmet enterin the finsl formulafor the velocityin the
end pcint of’the tmaU.axis.The orderof magnitudeof this term
is stillsufficientlylarge for a smallbut not too easll.c
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ocmparedwith termsof the order E3, thus it camot be neglected
for this ordorof approximateion.

It has thusbeen provedwith this specialexdmplethatwithin
the knownterme,the Rayleighapproximateion and the Prand~2-Bvsemann
approximationgive the H- result.

Translatedby J. Winier
NationalAdvisoryCommittee
for Aeronautics
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PAn T II. EFFECT Ol?CO]i PRES SIB ILITY

IN AXIALLY SYMMETRICAL FLOW

AROUND AN ELLIPSOID

The dtfferentid.equationfor an axiellysynmmtricalirrotational
flow of a compressiblegas is solvedon the basis of the solution
of Pranritl’slinearizedequationas firstapproximationfor the
case of axlellysymmetricalflow aroundan elongatedellipsoid:
terms of higherthan the secondorderin the interferencevelocities
are neglected. The mexlmumvelocitiesof ellipsoidsof various

x, r, q3

/u=x,T=rp

thicknessexe calculate~
the resultsere compared
eUipsoidsj reference 1)

in dependence of the Mach numberend
with those of W“thert(veryslender
-- (sphere;reference2).

SYMBOLS

cylindricalcoordinatesin compressible
flow

thicknessratioof body in the x-, r-
plane of

free-0tree3,n
X-exis

coordinate

flow -
.

velocityti directionof

in the incompressible
comparativeflow

thicknessratioof body in the a-,T-plane

free-strcmmvelocityin the u-, ~-plane

locel densitysmd sonicvelocityof
ccanpressibleflow

densityend sonicvelocityof air at rest

densityend sonicvelocityat U*

densityratio

Mach numiber

distortionfactor



componentof total
sibleflow in x

NACATM NO. 1233

velocityof compres-
~d i- direction

dlstwbsnce velocity

flowpotentialand Stokes!stream
function

potentialand streemfunctionof
disturbanceflow Ul, VI

potentialand streamfunctionof the
free stream

ellipticccmrdinate~in the a-, T-plane

scalefactorof the ellipticcoordinates

/=7qn=l/l ellipticcoordinate of the ellipsoid with-.

cd c-’”

thicknessratio c

factorof the disturlmncefunction

ratio of spscificheats

1. RESULTSAND NOTESFOR THE APPLICATIONOF TEE H3ANIXULRUZE

TO ELLIPSOIDSOF REVOLUTION

Xn orderto describethe flowaroundan elliysoidof revolution
cylindricalcoordinatesx, r, q me introduced.The x-axisis
placedin the free-streamdirection, r is the distancefrom the
x-axis,and q the angleof rotation, The flowyieldethe same
patternfor each q = const;thus the differentialequationof the
flow is independentof q -

.

,

.
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Q is the potentialdefined.by irrotationaltty,u and v =e
the velocitycomponentsin the x and r directions,end ~ is
the Stokesstreamfunctiondefinedby the equationof continuity.
If one substitutesthe disturbancevelocities

‘l=U-U*’ ‘I=v

for ~ insteadof the totalvelocitiesin the equation,where
U* is the free streamin compressibleflow,and expressesthe
local sonicvelocity a by the velocitiesand the sonicvelocity
am of the flow,one obtainssimilarto Bueernann(reference3)
the distutmnce-stresmfunctton $1 = ~ - ~a for‘thetwo-dimensional

case

–CD ‘-

Me+ is the

at ‘8s7, (p = po)} - for free stre~ (p = pa)# ~f +m is
the stresmfunctionof the free stream

free-stream.Mach
P.

number,u = ~ the densityratio

U* . - J??
r (3)

emittingthe secondpowerterms in the derivativesof the stream
functionon the right-handside,therere~ins the linearized
differentialequationof the axiallysymmetricalflowwhose solution



correspondsto the Prandtl
planewith the faotor v =

x
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%r%~n

. By distortingthe x, r

=U r=~? (4)

the linearizedequationgivesthe differentialequationof’the
incompressibleellipsoidflow,the solutionof which is immediately
indicated. Substitutingthe solution ~L(l) of the homogeneous

equationin (2) on the right-handside,the sol tion of the now
?)inhomogeneoue equationwill give a solution$1 2 and

lj/@/l(l) +I@’) (5)

representsa higherapproximationfor the solutionof the compressible
tlowdlfferentialequation. The solutionof the linearized
Ufferentialequation}that is, the firstapyoximationfur the
compressibleflow,is i.nellipticalcoordinates(Lamb,refei.’ence4)

for & ellipsoidof thicknessratto & and free-streamvelocity

U* in the distorted a-, ‘r-planec = &

with
cm

For q=qo= ~. the coordinatesu, T represent
\/l -C2

of thicknessratio ~ end the firstapproximateion of the
U1 followsfrom the solution~1(l;

(7)

.

‘.

tha ellipsoid .

velocity
.
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*U(l) 2 *M . .,,~l@)7 . . ~ ..W.)=-~~
T

(8)
r ~

The higherterms in the derivativesof the streamfvnctionare
neglected. If one includesthe squaretems for the csl~w..ation
of the secondapproximateion, the fIrst app~*oximation

(1) in the VelOCit,yU~“ $1(1) givesan additionalterm A ~

of higherorder

substituting(7) in (8) gives
maximumspeed (~ = O) at the

II%(’
Eu*~ 2

L F

thePra@tl approxlmation for the
~ontourof the ellipsoid (q = 7.)

#.th

1-

‘0“1/1- - 2

(9)

.
I

1 {lo)

Ne ectingthe termsof higherorderin
P(c < 1) gives (asmptotic valuesfor

6 for thin ellipsoids
VO–31, firstapproximation}

(11)

With the same omission in incompressibleflow

‘This resultof the first approximationcan be enteredat once
accordingto the Prandtlrule,when G5thert’sfcrm (1) is applied:
determinethe interferencevelocityin the incom~ressibleflow at a
contourdistortedwith lfv and multipliedspeedby IJ2.
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The ratio of the compressibleto the incom~ressiblemaximumvelocity
for en ellipsoidof small.thicknessratio 6 thllsis

(=:3=’:: --:=1 +:;%2 ‘1’)

Consequently,the ratio of the velocitiesfor thin ellipsoidsis
not unityin firstapproximation.Ratheran additionalterm
proportionalto ln~ is obtained,which at higherMach numbers
can be quiteconsiderableeven for smallthicknesses.The value
of unityis attainedin the limitingprocessto vanishi~ thiok-
nees at fixedhlachnumber. Consideringthat the firstapproxi-
mationof the potential ~1(1) by (7) is, like the velocityin

(11),proportionalto c2,
t
t is apparentfrom (2) that the

additivestreamfunction 01 2) can containonlyterms propor-

tionalto C4. Thus (n) certainlycontainstermsall proportional
to Cz. Ecu-the secondapproximation
the ellipsoidwith

7.+1
~ln— =

no-l

of the maximumvelocityat
.

Q. .

as abbreviation,one obtainsthe fol.lowi~result

with m)

Gothertobtaineda similarresult lnv/ln$, as is

apparentfromthe abovewhen (In 2) - 1 2s neglectedwith respect
to in e. But such en omissionis admissibleonlyfor extremely
small 6, because I.nc = - 2.996 is itselfno longergreat
with respectto (ln2) - 1 = 0.307, so that errorsof 10 percent
result.
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where

denotes

[1%{’) =pzU* 2 -1
Dlax 9.- ?:.2 ()

– Go-t
- 1) Q~

Prandtl’sfirstapproxlmation~while’

representthe additionalportions of

The expressions
1 l,7n -
:*zv@

=

iiependentupon q. = 1/1/”1-(@)~ ,
They are shownin figure1 for smul.
atelyavailablefor everypracticalexaiiple:q. is the larger
thetbi- the ellipsoidand the smallerthe Mach numbers Even
at ~*=o*5 and ~=o.3 q

?.
is not lei-gerthen 1.138, hence

stilla numbercloseto q. =

the second ap~mximations.

[i
AW11~(2 are solely
n ,=1~

that is, m the ratio e */~.
~n ~ 1 ~~ therefore Xdi-

Figure2 showsthe maximumvelocityincrementsof

on ellipsoids

the second

of various

The range
()approximation(til/U*)ma= &

mu
thicknessratios C* plottedagainstthe Mach ntrcber.
of validityof the curvesis boundedby the curve of the criticfi
Mach mmiber,on which the localvelocityexactlyreachessonic
velocity. The heavy curvesof the sscondapp~oximation (ul~*)u

‘%~ma, whichare ccmparedwith the first ap~oximation ~dlp



I

40 NACA TM No.

followsfromthe firstapproximationof the sti-e~ function

1233

$,(1)

when neglectingthe s~ueretermsin the derivativesof $1(11.’

This firstapproximationis representedby thin curves. To
illustratethe magnitudeof the two additionaltermsof’higherorder
the total.contributionby the linearizeddifferentialequation
~,(l)/lj*]m= (L)is includedin dashedlines. It i% seen that the

a-dditiveterm Aul contributesentirelytoo much and is

reduoedagainto the greaterpartby the term of the secondapproxi-

mation ul(2)●

k order to judgethe qualzty of the secondapproximation>
the DMximumincrementalvelocitiesfor the extremecase of the
sphere d*/t= C* = 1 are plottedin figure3 and comparedwith
Lemla’svaluesfor the sphereat severalMach numbers, Since
Lamlareferredthe Mach numberto the criticalvelocity”ofsound
.r:*, the Mach numbers p s U*/a* were convertedto the so~c
velocity b at free-streamvelocity U* by the formula

It is seenthatLsmla’svaluescomputedin fourthapproximation
by the Reyleighmethoddo not differverymuch from the second
approximationcomputedhere;hence it may be concludedthat this
seoondapproximationis surelysufficientfor all ~]racticall.y
encounteredellipsoidswith thicknessratioup to about C* = 0.5.

Figure4 representsthe conditionsfor the incremental
velocitiesin compre~sibleand incompressibleflow aroundbodies
of the ssme contourplottedagainstthe Mach numberfor various
thicknessratiosof the ellipsoidin firstand secondappr~imation.
Lemla’svaluesare includedfor compmison in dash-dottedlines.
Figure 6 containsthe correspondingconditionsfor the total
velocities u = u~ + u* in secondapproximation.Figuree4 and 6
representthe finalresultof the higherap.moximationwhichgoes
beyondthe Prandtlrule, The compressibletistui-banceand total
velocitiesof the secondapproximationsare directlyobtainable,
if the incompressiblevsLuesare takenfrcm figure8.

In the calculationof the secondapproximationof the tresm
r)functionand its derivativesthe terms of the solution $lV 2
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were representedby infiniteseries

towardlogarithmiclimitingcurves.

41

which,for qo+ 1, tend

If one replacesthese series
for thin ellipsoidsby theirlimitingcurvesend considersthe
terms up to the order CA om obtainsfor the increment~
velocitythe asymptoticformula(secondapwoximation)

+@4(w2.1

4
) (1 + KMm2) (15)

‘2) m?. &o(2)The asymptoticveluesfor the partialsolutions~tq

employedhere are indicatedin figure1. For the incompressible
case for v = 1 the asymtoticformulais ti-ue

Thus the ratio

-,~?

I+y23.n2&-h~- ~E*
)—

of interferencevelocitiesis

(16)

-,

o?)



42 NACA TM No. ~33

For the totalvelocity u = U1 + U* the ratio is

( )=:Conmr.

%cCnllpr.
Zsl

+

The smallcrossesindicatethe asymptoticvalues02 the second
approximationfor C* = 0.2 in figure2; one can see that they
are stilla littlebelowthe firstapproximationat smallMach
numbers,betweenthe firstand secondapjyxxximationat medium
~ and then abovetlhesecondapproximation Then they fbally
approachthe secondapproximationasymptoticallyat l&+l,

sincefor p“~cn in no =
- ‘t’” ‘O”+l’

Figure 5 contains,asidefrum the”exactsecondapproximation,
the valuesof the secondapproximationcamputedby the asymptotic
formula(1) for C* =.0.20 Thus the two secondapproximations
do not differverymuch for sma~ thicknesses If one neglectc
the termsof higherorderin (27)one obtainsthe asymptotic
values{11) of the Prandtlapproximationcorrespondingto the
exactvaluesof the firstapproximation.One can see from
figure5 that the exactvaluesere too small.,the asymptotic
valuestoo high,hencetheiraverageis closeto the second
approximateon. The dottedcurveIn figure6 representsthe
asymptoticvaluesof the firstapproximationfor C* = 042
correspondingto (17)with neglectof the termswith c*4;
the dashedcurveindicatesthe exactfirstsolution,

.

.

.
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11. OUTLINEOF TEE THEOIU31!ICAL

(a)The DifferentialEquationfor

DERIVATIONOF THE RESULTS

Potentisland StreamFunction

The continuityequationof a compressiblemediw for axially
symmetrical.flowwith locel density p and the localvelocity
vector E ie

di.v(pw)= o (19)
.

Expressedin cylindricalcoordinatesx, i-, q with ~ = (u, v, w)
it beccmos

(20)

In the axiellysymmetriccase the flow in everyplane v = constant
is the ssme,hence onlythe flow in one x, r Qlan.eneedsto be
snslyzed. In this plane (w= O)

(21)& (Pru)+ & (prv)= O

Thus there existsa Stokesstreemfunction ~ with the property

If the flow is
potential~,

irrotatlonal,thereexistsin additiona flow
hence

(22)

Thus fromthe disappearanceof the rotation, rot M = 0, there
followsfor the streamfunction

(23)
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Moreover,by Bernouillilsequation
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with

and by definitionof the sonicvelocity H* = d p/d p the
relationfollows

k.dlnp.-~
P 2a2

Substitutiw (24)in the basic equation

dq2

(23)gives

(24)

(2’3



or better
~

The

(
1-

or

The Mfferential.equationfor the potentialis obttinedin the same
WY” Fran the equationof continuity(21)and the Fe:”noulli
eqhtion (24)therefollows
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Hence the differentialequationfor the potentialis

( )-~ i@rr+@r@x@rx‘o~2
.

or, shorter

Transformation(b) Introductionof the DisturbanceVelocitiesand

to EllipticCoordinatesin the PlaneDistorted

Accordingto Prandtl

From the adiabaticequation p/p. = (P/Po)K$~ = 10m5 (~r)

and the definitionof the sonicveboity W* = dp/dp there
followswhen the pressureis expressedby q2 accordingto the

Bernoulliequation, a2 = ao2 - ~ q2, ~ = sonicvelocityof

the

the

If
and

gas at rest.

BymeanD of this relationthe densitycanbe expressedby
disturbancevelocities

U1 =’U-U*; Vl=v

w is the velocityoi’soundat free-streemvelocity q = U*
60pm the correspondingdensity,therefollowswith — = v
Pm

7 *

.

.

.

.

.

.
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or

P.
r

4

U*U1+ ~
—Zul+— —

82
[ j
(1 + K M=2)U12 + vL2

P 2* 2
102=
1.

with ~=M2
%“

Splittingoff the contributionof
stresmfunctionthereremains

because

Naw the disturbance
stresmfunction

Fram

47

J (29)

the free-streanvelocityin the

*m= ‘&V U*IQ

velocitiescan be expressedby the diaturbence

1
followswith V2 = —

l-&2

(30)
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Hence in firstapproximateion

If one substitutesthis apprmimation (30)in
orderone obtainsas the secondapproximation

NACATMNO. 1233

*

.

(30)

the tezms of hi~er

Substitutingthose disturbancevelocities in the equation of the
stream function (27}, and neglecting all terms ot higher than the
secondorderone obtains,with

and
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.

.

.

.

.

“

1

=0

Thus underconsiderationof the term up to the secondorderthe
differentiel equationof the disturbancestrem function is

(32)
Distortingthe coordinatesaocordingto Prandtl x = u r = VT, one

*d2 $2
- wo& + T -

1
(K-1)*

If ~(~) is a solutionof the homogeneous
that is,

* (1) +*TT(l) . .*A.Ua T

(33)

differentialequation,

=0
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the insertionof this solutionas firstapproximationin the
right-handside of (33)gives)~th

*=*(1) +$(2)

for the correctionto Prandtl’ssolution
differentialequation

r

the inhomogeneous

[

+I@ *a(l)
T

Sincethe solution(7) of the h-neous

- 2*GT 1(1)~I (34)

J

equatim is givenin
elliptic coordinate~(sk) must be transfomnedto the new coordinates.
The simplestweyis achiev’edbynot usingthe trufo-tion (6)
but ratherby mappingthe 6, 7 planeat firston an auxi2.lary
Q- ~j 0 by means of the -tic f-tion

The transitionto ellipticcomdinatea is then givenby

.

.

.

●

The existenceof the Cauchy-Riemanndifferentialequationsfor the
napping (35) facilitatesthe transformationconsiderablyand
(LWOalso appendix,sections) the tramaformaticnlymemm .f ~~b)
involveswre~ rewriting& the resultwith the new notation.
The differentialequation(34)attainzthen the form
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.

.

.

●

(c) Solutionof the Differential

(37)

-’J
Eq.zation

brokeninto two J

F

In orderto solve (37),the equaticnie
differentialequations.

(# - 1) Vqqf) +(1-(2) w# =~ t4 - 5t2v2-

+ 2(7p -
1

1) ( & - 5G2q2 + 3112+ !2) (38)

and determinesone part icular colut ion for each of the two, This
is accomplishedby solvingthe equationfor individualternison
the right-handside until finslly all. terms on the right are
etiausted. In this way one obt ns as particular integrals, with

%the simplification (ln x)2 = in x
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This solutionsubstitutedin (38)givesexactlythe te~ on the-
right-handside.The indicatedsolutionvanishesas ljn aside
fr& a constantat infinity,hence

attaineda To saiie~ the boundary
Golltourq = qo, solutionsof the

equations met be determined which
solution makes the latter equal to
previously obtained terms (39)for

at infinity
b
arallej.’flow is-

Condition * 2 = o at the
homogeneous di~ferential

added to the nonhomogeneous
zero, that is, cencels the
? = 70’ This is accomplished

without difficulty for the terme of tho f& (1 - !2) CP(~) ~d

~+- ‘(v), nowweset upthe equation#g#?

*.(l=p) -J@.=--
(n2 - c2)n

If the differentialoperatorat the left-handside of (38)is to
disappear,the condition



.
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1
- l)(2n - l)ql
f ‘?

+ 4n(# -
[

~2) J- q(v2 - 1) Q’ + (2n

L
)]

-l)va-11 =0

will exist. For n = O the differentialequationis

(qe-l)q” -.2ql=o

that m,

%oth bracketsmust disappear,sincethe solution
$?q)n ~S1~Obe independentof ( ● The equations ~” = O and
vd ‘~ = O =~ both satisfiedby Q = %qO Hence one o~t~~
as Ixxmgeneouebasic solutions:

end

$3 =(1-

But for n = 2 two differential
no commonsolution. Thus for tho ~erms of the

obtalnodwhich have
type
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no closedsolution complying with the homogeneous equation can
be given, because the second expression, also which can be
reducedto the firstby differentiation,is of the same type.
‘Iheeeexpressionsmust thereforebe developedin terms of
functionswhich are solutionsof the homogeneouseq,uatione.
The generalsolutionof the homogeneousequationwhich disappears
for q-= iS of the form

where pn(~) md ~(q) representthe sphericalfunctionsof
the firstand secondtype. Thus the aboveexpressionsmust be
developedin seriesof this type for q = qo. A homogeneous

~02 -1
L~—solutionwhich for ~ =qo assumesthe value - ~

_2.f2

Is obtained(appendix,secticn b) by setti
dQn(@

+ = J(g):

~ = QJ(?)d~

Sincethis seriesconvergesabsolutelyand uniformlyfor TI2 To
and 1~1~ 1 (see &ppfQldiX,sectionb) for ~ =qo

# - 1
$4(70) = -$ln—

IIo* -t2

Differentiatingtwicewith respectto ~ givesa new serieswith
the aid of which the secondexpression can be also represented
(appendix, &SCtiMb).

.



I

Havingthus the terms of the id cmogeneoua mlutlon sup@anented by hmogemoua term with
Correspmmlg Conetents so that the Sxpremkme for q = q. disappear, these expressions are

then appropriately expanded in powers of q - qo. The firsttem then@vee the clsrivativeB
of the two parts of the strem function with respct to q at q = qo, needed for ccm@ing

the marhnum velocities at the cent our alono:
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and

The derivativesof the e ries followfrom @) ~d (42)when
observ~ the relatim

~((72-~}~’(q)j =n(n+l) ~(q)
(reference4). From the de~tvationof the-~tre~fmction V(2)

-&

~ 2)
=- = 2~2~2[l- a%(z) a~1(2;’

82

1 +1

lU2(K+l)-(K-1)-~= ~
co I_

.-

C2 .du*/~ (?02 - 2)2
~2

[

-“
v~ -* (902 -

1

l)~~o+la
?O-1

thererestitsthe velocityaccordi~ to (31)by raeaneof the
followl~ relationfor the ellipsoidcenter (~ = O)

8 $

al~%=~a + 1 a
p :F T ‘T(~=o);q

.
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since from (6) follows

.by differentiation, henoe with T ~~1 k ~112 -

The correction U1(2)

ellipsoidthereforeis

for the velocityin the

in first approxirfiation

L

Substituting

(31)for the

center of the

in its steadthe firstapproximation$1(1) in

velocities,one obtains

2

(44)

.

.
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+K 1(
fl$ -

%2
1)2 @ ---

[(70 - 702 - 1) Qo-l’

(45)

The totalinterferencevelocityin the centerof the ellipsoidis
thus

.

.j(o---+V2(1+KM2) Q

1

[ 21*+v.+*’lw’j“’)+ l+jL2(l+K Mm)

Substitutingin it the derivativeof the stresmfunction$1(2),

accordingto (43),it is seenthat in the practicalevaluationof
the formulaeonlythe calculationof the two infiniteseries



.

--

.

.

.
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offersany difficuliiie8*The derivativesof the syhericalfunctions
Pn(t) can be given at once for ~ = 0, whenbe== in mind that

(C2‘1) ‘n(t)‘n(tpn-pn-l)(reference4)

one obtains

‘AIM-1(0)= (2n+

= (-l)n

1 ./3 ., 5 ,(2n-1
1) P2n(0)= (2n+ 1) “2:~’4::”6”., . 2n ) (-1)=

()
p+l 2n+l

(47)22n n

The sphericalfunctions ~ for small n ere best computedby the

recursionformula
*

with

Q~To .% -1 t
d’

whilo the derivative ~’ h

Qn:

obtainedfrom the tUfferenceof two

(no2- 1) Qn’ = n (70 Qn - U-I) (49)

The convergenceof the series

as the ellipsoidbecomesmore

(1)E ~r-(’s
~ - @L_ grows worse

slenderand the Mach numbergreaterj
that is, the closer W. approachesunity- Since theseVS3.uesae

of particularinterest,a largernumberof seriesteyu m~t be
calculated.However,even in the calculationoi Q12(2) tO SiX
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validdigitsby the recureionformulathe initialvalue Q~2~ to

20 digitsmust be exactlyknown,while,to obtain b T-(2) for
qf-

threedigitsexaot, Qn to Q19 1s re~uired. The higher ~
with n >10 must thereforebe determinedby a well converging
series. As the conventionalrepresentati.onof.the %( qo) as

powerseriesin termsof ~ convergesvery slowlya new

representationGS hyper-gemetrlcalseriesis used,which
convergesparticularlywell fm higher n. (SeeaPpoti, section~).

The infinite series
3 @
&_

~ -’”(2)
- XL computedthis

way for a numberof q. v&es were approximatedby curves,which
passwell throughthe calculatedvaluesfor the individual.q.

and for q.-*1 and qo-~~have the limitingvaluesof the

consideredseries(tippr~i~,sectic~ d, ‘(T$J). The accure’cdy.c~~uted
valuesare givenin tableZ, the approximatimcurvesin
figure7*

~ –m ~T(2) (u $ a#2)
90 q) Q

— 7qL. Q. q_. o_

1 “ *--- .“--- -1 +4
1.25 -0.493 !?37, 0.081508 -.450-@i .074l$z?
1.5 -.219qa -.125578 -.272842 -.156052
1.732 ‘.326P2 ‘.~O 632 ‘.192 447 -.183197
2“ ‘.076117 -.09321.1
3 ‘.020096 “.033401

A closer analysisof the behaviorof the infiniteseriesin the
vicinityof q. = 1 yieldsas asymptoticrepresentationfor

small q. (%2) (appendix,section~, (76)and (78)and t = o.

.

--

.

.

“

.
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These approximationsfor u validneer unityare also shownin
figure7 and it is seen tha? even smalldeparturesfrom q. = 1
are accompaniedby perceptibledifferencesin the valuesof the
functions● An exactcalculationthereforerequii’es the use of
the interpolationcurvesof the exactvslueseven for small qo.
But if ordy a roughestimateis required To can be set equal

to unity in the additionalterm of the secondapproximation
exceptin Qo} and the asymptoticrepresentationof tho

derivedsums

(50’)

may be applied. In this case the expressionfor the maximum
velocityat the ellipsoidcan be simplified. Inserting(50’)
in (43)givesat ~ = 0, for the derivativesof the contribu-
tions of the streamfunctionthe asymptoticallyvd.idlimiting
curves(fig.1)

For q. near unitythe followingdevelo.=entsz“e valid

1 l/ @*+,*
-Z!(l.l ) .

Insertingtheseexpressionsin (46) one noticesthat only the
term of the lowestortirneeds to be consideredin

becausethe entirebracketis alreadyproportional

Therefore q. msy he set equslto 1 everywherein

with exceptionof the terms Q. s ln~; one thus
e+

the-p-&enthesis

to ()
& l+.

v .)
the bracket

obtainsup to
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6)
C* 4the termsof the order > — , for the

in the centerof the e~ipsoid, with U2

NACATM No. 1233

increaseof velocity

&2=v2-1

hence

(52)

*
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111. SUMMARY

(a)The effectof compressibilityon the mciollysymmetrical
flow aroundan ellipsoidwas detetined by ccmpu%ingthe moximum

U*
velocitiescm functionof the Mach numlmr Mm = ~

-& “ Cn= Voloclty

cifsoundat free-strcomvelocity U*) in 6econ&cpproximation for
ellipsoidsof voriousthicknesses.The voluosobtainedarc comparod
with the valuesof tho firstapproximationwhich arc obtainedby
computingthe incompressiblevelocityV03UOSfor a alondere~lpeoid

.—
/

of thicknessratio f=\/l. hia2# (d* = ~hicknessof ellipsoid

in compressibleflow)by the Prondtl-Gothertrule (reference1)
and.the resultis multipliedby the squareof the factor

“=’fi opposedto the initial.distortion.

For smell.thicknesses
(% ‘o’).

tho secondc.pproximation

clhnostcoincideswith the Prmdtl a roximcticn,end the
differencesore stillsmclllup to 1! s ... (6.TO, $ ~ PeZ’..nt

of disturbancevelocityat M = 04: (fig.“2).03

(b)A comparisonwith the maxlnuuuvelocitiesfor the sphere,
calculatedby Lmnlawith the fourthapproximationof the Royloigh
method tnticatesthat even in this extremecase thp departures
even of the secondapproximationare not cppreci~ble(error
=2.5 percentof the disturbancevelocityat M = 0.5). Thus
the seconda proximationis stillamplysatisfactoryfor thick

()u< 0.5 (fig.3) ●ellipsoids
t-

(c)The ratiosof the interferencevelocities

%c~~ess. / ‘lincapress. and of the tatcd.velocities

‘compress./‘incanpress. are representedin di~ms (figs.4
and 6) for the pointof maximunthickness. The velocitiesof
the seconda~roximationcelculutedhere can be obtaineddirectw
by thesediagrams,if the incompressiblevaluesaro tokenfrom
figure8.

(d) I%veloping the first and second approximation for the
moximumvelocities in powers of the thickness i-~tio (thelogarithmic

(
qumtity in ‘$,~being regordedas of the oi-derof magnitudeof..
unity)givesexpressionsof firstcnd secondapproximations
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asymptoticallyvclid for smallthiCknbSS, dependinguponwhether

()L* 2
only termsproportional to ~

()

or alsothose~~:r~~idal

to
gk
.t cre included. For smd.1.thicknesses

the secondapproximationcan be replacedby the clecrer

asymptoticexpressionwithoutintroducingcn appreciableerror.
In thismnner simplerformulasfor the velocityi-dies of
compressibleto incompressibleflow are obtained. In first
approximationone obtainsfor the locationof mcximumthickness

‘lcoaupress.
ulincompress.

=1+ ‘w
ln&l

t

and

‘comrmess. ‘~ 2

%ncomyessa
=1+ ()t Ixlp

Iv● APPENDIX

AuxiliaryCalculations

(a)l&cnsf- tion to el.litiic coordinate~.-The trans-
formation(6)

a=kcosh~ ~ = k SfZlh ~ 7=co13(3 5=81n@

~2-p2=# y*+$=l
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givesbecauseof the Cauchy-Riemanndifferentialequations

( )s@7%j2+2si2#%%2=e ~

*D2 D 7U=-TT
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and

The left side of the differenti~equation{3k) thus becomessince
& + WTT . ++

.

( E’5+ %@)

while
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must be insertedon the right-handside of (34)}so that

Inserted in (53) one obtains

i

~2(72 . * ~282 . p272
52) + 2a

D - 72(c#+ p2) +44*
1-.

[
2ka52 2@72 + (72 - fj2)a2- 4~2y2+ 92(72. 52)

1
~p2 U%2 - P%2 -

D 1/
72(CF + flq + !&fZ5

D
.-l
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+5qa2+ ;2) .!iq&+p*(72 - 52) + 2P* U%*- ‘1272D

The thus obtainedexpressionscsnbe immediatelytim~fmd into
ellipticcoordinates.There is:

:

Now, since

The left side of the differentialequationbecomes

.

.

“

.



.

--
.

.

,
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end the expressionson the right-bendside sre

69

L

equationreads:

(2) =-W
‘2)%

%L2

2
IAC2

—— (~ . p)
{lp “ @

- 1)

(55)

,

.

.
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mul.tiply
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I!knoethe requiredhomogeneoussolutionwhichhas
value for q = q. is

the desired

.

.

.
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To obtain‘thefurther

homogeneoussolution

must convergefor‘sl.l.

hoe- 1“
- l)~I+l(n) -—+ -h — (57)

n-o %2 -
~2

developmt of (1 - C2) -
~3

(?02- [2)2’ the
q- isre~esented bya seriesthat
92 . &
q>l:

For q = q. follows

wl$h

and as before,the

Bn*=A#(qo2 - l)~’(qo)

coefficientsfollowby psxtied.integrationas
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J 1 Pn(@kA-L=jo
n even

-1 (Z2 - ~2)2 s -~’(z) nocld

1

Henoo for all ~ >1 the seriesdevelo~ment

Ilu.3.f-”” 4n 7
T2 .[2 ~1=0 (2n’+~)T2n’ +2)

is velid. Since

(58)

(59)

it followsby differentiation
that

For q = q.

subtraction

(66)

therefellowsmultiplicationtith ~. from (6o)end

of (59),

-!



, . ‘t

On the other hand the following development is to he velid

~03fI- fj~ m

P211
*,+1(1 - $?)r’a,+l({) (002 - l)la’%,+l(qo) ~~B&.(1. - {2)Pn’(~) (Q)

(nop- {2)2 = ~ o

G
E

w ccmtparison of the coefficients mm therefime obtains owing to the Legmdre dif’far-

entiel equatbn (referenoe 5)

TIo~I+l(’Io)(~’ + 1)(a’ + 2) = 2no%’=I+l(no) + no(IIo2- l)Q’’%I+l(IIo)

1
2. l)Q’’~I+l(qo)}[@)

1 4.nl+3 (noa+ uQ’2nI+l(?o) + no(llo
A4-W
2n’+1 = z (2n’ + l)(2n’ + 2)

(no2 - l)Q’a,+#Io)

4.

This development cen also be secured directly by starting from (61) mUklplyinS by Pu’({)

and integrating over ( . The intefjml on the left-hand side

glvef3 efter ptitel.integration

-1
w



and theseintcgrelscan be expressedaccordingto (58)by the
fierivative of ~(z). By differentiationfor n = 2n’ + 1,

(58)gives

hence

thus the relation(62)is obtained. AdtU~ the series(59)and
dividingthe series(61)by -2 for arbitrsry q one finally
obtains

– (1)Whetherthe obtainedserfes)_ ~ ~(2)
actuallyattain

the valuesgivenin (57)and (~) must ~~--~ovedby absolute
M uniformconvergence.Differentiationby termsgivesthe
a ‘“(l) ~ ~ >-’(2)~o~d fa the velocitiesin (43))the
%1.

F .-

convergenceof whichmust alsobe proved. It is seen that
the (1) seriesdifferfrom the (2) series only by the factthat

~(l) < ~(z)

3s valid for the nth term ~. Thereforeonlythe convergence
for the (2) ueriesneedsto be proved. To this end, the spherical
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functionssre to be estimatedfirst. Frcm the inte~al repreeenta-
tion for %(z) (reference5) there follows:

<1 J(1 LQ’n 2+1 @-lat

2+12-J (z - t)2

Putting

1Q=U @a=- z-l

z -t at (z - t)2

end

()‘1-tnz+l &=-~@du
~-t (Z-$)2 z

and in addition

J(Z2 - l)Qn’(z)= & ‘1.(1- t~n at

-~ (z - tp
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For,fromthe Mfferentielequationof the sphe.’icelfunctions
therefollowsby integration

(7.2 !
70

—-+ . ~ (%2 . l)Qn’(TIo) + 1 = n(n+ 1) QJz) dz

-1

- l)Qn’(~O)~o=l

hence

I(~2
’71

- lkJ(z) = ILaL
/

J1 - W (z
“ t) at

2n+l ~-1 (z’- tjn+l

I (!1and finally,since ?n

I
(1-C2) Pn’(C)~=n(pn.l

.

-.
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.

.

,“

-(2)it Is seen to be sufficientto provethe conver~enceof ~

for q = qo* The sameholdstrue for the series
(2)

%x’=
from the integralre~esentationof Qn there i%l16wscorres-
pondingly

Q&+Jd
—<lforq>qo
%n+l(~o)

Therefore,onlythe series

)_(2)

—

end

?-no
=’~(4n+ 3)~n+l(qo) (l-t2)2’2n+k(t) =~~

11-~\–(2) –..

q/_ u )( 2n+l)(2n+2)(4n+ 3)
Vlo —

Q22n+1(IIo)

(V02 - fl)Q‘2Wl(no)

needs to be snalyzed. From (65) and (68) therefollowswith

2—=q<l for qo>l
qo+l

2N1~2(2n+ 1)< * (2n+ 2)q2n+1/%l<!&3q
(al + 2)

—
Henoe~(2) is thus uniformlyand absolutelycon-~-ergentfor

Irt$l ~ ?>no, becausea convergi~ con~=ative series.=
with greatermemberscan be given. CorresDondin@yowi~ to
(67) end (68)
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pq <

<

Eence
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(2n+l)(2n+2)(4n+ 3
(2rl+ 2}(q. - 1) ) ~n+$?o) (1 - !%’2W2(L)

14<~ (2n+ ~)(2n+ 2) q2n+1
: (7.-1)2

The comparativeserieshowevercon~ofges,withcei-tainty)as second
derivativeof a power series or q < 1; thus the a%solute and

f)uniformconvergence of $ ~ ‘2 itself is provect.

(c)Ced.culationof the sphericalfunctions ~(z) for the
arwmente lzl>~ ~d n>lo by~~ofa hynei-neometric
scuries.-For z > 1 the inte~al representation

is applicable.Introductionof a new vmiable X by

so that

~$=g+

dx I\Z2 - 1 cosh $

gives

(69)

.

.

./

.-

.

.,
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Throughthe substitutionh = z - 4
~2 - L Coshx

7l/x n

/’

L/h 1

()

L
&. hn(l -hX)- El-;*&%~z) ‘,/0 J1

. - 2hz + h2 lo

-.

with

r=++’=A=z+\z

Putting h = *(1 - o) the integralrepresentationof a hyper-

geometricseriesreads

(70)

serieswith the variablewhere F indicatesa hypergeunetric
).,.%

(

1

)
F a,~,Y3——

d
=? %

=1+ -@–-—
1-%* (1 .1Z2)P

7>:1!1 -1*

+ da + 1) B((3+ 1) 1

7(7+1)2! ~~+”.t

+ da + 1)(cL + n)13(B +1.)[~+n)

7(7 +1)... (7 + n)(n + 1)! (~ .1Z2)n+l‘“ ● (7~)

.

.

where ~(qo) is replaoedin the seriesby ~ = To + J702 - 1*

It convergesfor # - 1> 0, qo2> 9/8. This ee:-~esconveres
very quicklyfor greater n and not too smell qo. ?The ~ qo)
with n >10 sre readilycomputableby this fo.mmla,for
n ~ 10 the recursionis preferable.



&

The

NhCATMX’?o.~33

coefficientsof the series

“

.

are computedby recursion for n = 1, 2 . 0 . 19 0.Ix3
.

., 7. There isv =1. .

with

The
with the

for n =

1+1 = ~ bkl

(2V + 1)2
~=(2~+2)(m +2-

obtainednwnericalvaluesare Givenin
factorsof the seriesfor diffei”entn

(72)

v.

Table2* along

.

. 2(U-..J?.?.~al (73)All “ 2 g ; ,4. ”,.’;n2: 1 ‘ 4.+1 2n + ~

10. . 19(table3\

TABLE 3

FACTORS FOR THESP~ICAL FUNCTIONS %(z)

n

1
2

:
5’
6
7
8
9
10

An

3,,333333333
19066666667
.914285714
.822@8 412
.738816738
.681984681
.636519036
● 599076740
.567346386
a540 520367

u.
12
13
14
15
16
17
18
19

0.5J.7 019 481
.l~9f5338 70,
.1!.779>5 737
. 46J. ~j74.553
.446586 277
●~33 055299
.1:.206$2 290
.~!.og312 Jkgg
.396817 307

.

.

‘Table2 may be foundat the end of the text.
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(d )Asmwt otic summation of the series end a—------ mrcuhation Curv e~- To bo abk to indicate

a \—(l) 2 ‘1+’)
‘pw*~l~c~e”f’=’r q/_ ‘d x’–

that pass through the canputed points

88 C1OS8IY 88 possible the ititm values “for

fird.

(2)

~=j--(hn + 3)&~(no)(l -

V-lo ‘–

= %.2

The derivative of the first

at rI= no (me equation 42)

{2) P’*l({)

74)

(1 -()’P’ ‘n-#

(7!3

s -1
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Q&) =;pn(z) J-I-l--~n”q(d

with

fn.l(z).* Pn-l(z)+~fpn.$z) +fipn..~(’) + “ “ o

hence

[ 1

(22 -I) QJ(Z) =-Pn(z) +( Z2”1) *Pn’(z) ln:~-f:.l

end 2f -
1 - -—--A 1

f~-1 is a polynomial

L -J

of the (n - l)th de~ee in z, hence ffnlte

2+1
lw”(z2-Tabz- 1) I.n::+o

,W

I.

Thus the series(75)canbe reducedto the se~-ies(74)multiplied
~o+l

ty ~ln~:

,

.



. # r

The correapondimg aagmptotlc expression for the other series IB obtaimdby

of (74) tith respect to qo:

: (l’loz+ !.2) 411
Q=(l-!2)

-alo(lloz+ 3c#$2

(qo2 . p)3

differentiation

This derivative is alao uniformly convergent>

of a power mriea. Multiplication by (qo2 -

gives e@n a nnifoznil.yoonve rgent 8#i”lt?3

5+’)3 -

since E(2)
m.

1) fol.loved by

converges 3Jkw the derivative

-her ti~~erentiatian

s!
gl

.

—



—

2(1 - (2

‘[
(nok + 3c2)(llo2 - ~2) - 3112(n2 + 3(2)(1 - (2)

F (qo2 - @4

1
+ 12$2 I@qoa - 1) ~. 2 *.

D o

% ‘%?n.40)< q&l E&E*J ‘he Converg-e ‘s

tezm of the series we get

S*< * (al+ 4)(2n+ 3)(2n
o

The desired serlea reads then

(77)

sgaln readily appsrent. For the

+ 2) pl

/L-a @) ‘
&L_ VW = (~n+ 3)(2n + 1)(2 II+

-o

%%+ “,(no)
(1 - (2) P’W1({)

~~
2

- (qo2 - l)Q’2Wl(~01

. . , -.
-.



, . .. .
,

and Owing to (77)

llQ%o* - ?) + 3(4(3& - 1) + 2{* no2(71102- 9)
~2-3

— G -::1 ‘o 2 n$ = 4:.:1 ‘0 ’78)~2-~2
o 0

hence

practical interptition cwves ore (fig. 7)

(79)

8?
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These curvesactuallyhave the givenvaluesfor q. - 1 but

the limitingvaluesalso coincidefar ?o+~ Becausefor

V*+” due ~ (70) :“~+%o and F-+2

7.== ~o=m

blo2 - l)Q’
2n+l

If 1102>>1the secondterm in the seriesis alreadysmall

comyaredto the firetand it sufficesto considerthe first
(n= O):

n=()

(80)

.

.
‘.

.

.
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The termsof the otherseriesmerelydiffe~b~ the factor
(2n+l)(2n +2), that is for n=O

Translatedby J. V-
NationslAdvisoryCcamittee
for Aercaautics

(u
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n

—

1
2

:

z

i

9
LO

u

@

L3

L4
L5
1,6
1.7
U3
@
—

‘%

.lomoccao

.071428571

.055555556
,043454545
.038461538

●3333333
.029U765
.026315789
.023809524
.021739130
.02000CQO0
.0185m3519
.017241379
.0161.29032
.015151515

.014285714

.013513514

.OI.2820513

.012195122

‘%

).032142857
.017857143
.OU.363636
.007867133
.005765231
.0044H765
.(X)3482972
.oo2819549
●c@329193
.cm!%w
.001666667
.w1436782
.oo12513%l
.001097707
.000974026
.000863726
.000779@6
.W0703$5
.ooWJ3117

●OM?80952

.006764069

.oo36421gl
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Figure 8.- Maximum velocity on the ellipsoid of the thickness ratio $J

for incompressible flow (M ~ = O).
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